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1 Introduction

The Stable Marriage Problem is the problem of finding stable matching between two finite sets of men and
women. We call a matching unstable if under it there are a man and a woman who are not married to each
other but prefer each other to their actual mates. Each element of the set has a preference list for the elements
of the opposite sex. David Gale and Lloyd Shapley proved that, for any equal number of men and women,
it is always possible to solve the Stable Marriage Problem and make all marriages stable. They presented an
algorithm to do so.

2 Notations and Terminology

• Matching : In Mathematical terms, a matching can be defined as a bijection from the set of men M to
set of women W. The situation can be generalized as a complete bipartite graph. Each edge represents a
marriage between a man and a woman.

• Stable Matching : A matching in which there does not exist a man and a woman who prefer each other
over their present partners.

• Unstable Matching : A matching in which there exist atleast one pair of a man and a woman who
prefer each other over their present partners.

• In the following, we will generally denote one of the pair with a capital letter and its counterpart with a
small letter, for example, man denoted by A and women denoted by a and so on.

• Also we will use the notation aAb meaning A prefers a to b and similarly for AaB. We also denote a
couple or a pair formed as Aa.

• a ∈ A implies that a is on the preference list of A and similarly for A ∈ a.

• Incomplete lists : It is not necessary that the preference lists be complete, so there are cases where
they are incomplete(meaning not all the opposite element may not be present in the preference list of an
element).

3 Stable Matching

As said in the beginning, a matching between two finite sets(one set is A,B, .. and the other a, b, ...) is called a
stable matching if there doesnt exist Ab and Ba such that AaB and aAb.

For a more detailed definition of Stable Matching: (A1a1, A2a2, ...) is a stable matching iff-

• ak ∈ Ak and Ak ∈ ak for 1 ≤ k ≤ n

• there does not exist j and k such that AjakAk and akAjaj .

To understand more of this,let’s go through a example: Here is a matching problem for men and women with
their preference lists given:
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Men’s Choice Women’s Choice
A : c b d a a : A B D C
B : b a c d b : C A D B
C : b d a c c : C C C A
D : c a d b d : B A C D

Let’s consider a matching (Aa,Bb,Cc,Dd), it is unstable since A and b prefer each other than their respective
partners. So the considered matching is an unstable matching. Next,let’s consider (Ad,Ba,Cb,Dc), and we
can check that this is a stable matching.

3.1 Incomplete lists

The above example had preference lists which were complete, but there maybe cases where a man(say) did not
have all the women in his preference list.These are generally categorised under Incomplete lists. To solve these,
there is a method where these lists are converted into Complete lists and then solve them. To convert them
into complete lists, we add an imaginary man V , the widower and an imaginary women v, the widow.V will be
v’s last choice and v will be last on list of V . The women who have incomplete lists will have v added at their
end of the list and then the remaining men who were not in the list will be added randomly. Same goes for the
men also. Men and women who have complete lists have v and V added as their last choices. This makes the
incomplete lists as complete ones.

Theorem 1: There exists a stable matching for the complete system such that V is married to v if and
only if there exists a stable matching for the incomplete system.

PROOF. This theorem is of the form p ⇐⇒ q. So, we will first prove p⇒ q and then q ⇒ p.

• For the p⇒ q part.

Let M = (A1, A2, A3, ..., An, V )
and W = (a1, a2, a3, ..., an, v)
There exists a stable matching such that v is married to V and ai is married to Ai

We know, V is the last preference of v
⇒ AivV ∀i s.t. 1 ≤ i ≤ n
For the matching to be stable aiAiV holds ∀is.t. 1 ≤ i ≤ n
⇒ ai comes before V on preference list of Ai ∀i s.t. 1 ≤ i ≤ n
⇒ ai is part of the incomplete list of Ai ∀i s.t. 1 ≤ i ≤ n
⇒aiAi forms a stable matching where it is independent of V and v.
Hence, there exists a stable matching for the incomplete list.

• For the q ⇒ p part.
There exists a stable matching for the incomplete system such that Ai is married to ai and ai ∈Ai and
Ai ∈ai.
Now, we form the complete list for Ai, by adding v after the incomplete list and then place all the
remaining aj ’s not in his list in random order.
Here, we already have a stable matching from the incomplete list ,i.e, every Ai has a partner ai which is
ahead of v in the preference list of Ai. Same goes with ai.This happens ∀i, s.t,1≤ i ≤ n.So, V has got
only v to pair up with and, hence, the complete list has a stable matching with V paired up with v.

Till now, we have assumed that two sets of n elements have a stable matching solution. Infact, it has been proved
that there exists a solution and to find it, an algorithm was designed by Gale and Shapley. It is discusssed in
detail in the following topics.

4 The Fundamental Algorithm

In the fundamenatal algorithm the men in turn, one by one play the of suitors, making advances to the women,
who accept or refuse according to their preference.
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4.1 Algorithm

The notations used in the algorithm:

• n : number of men = number of women

• k : no. of couples engaged

• X : the men who approaches the women

• x : women towards whom X makes advances

• Ω : veryundesirableimaginaryman

Algorithm 1 Gale-Shapely Algorithm

1: k ← 0
2: for i < n do
3: Marry woman i to Ω;

4: while k > n do
5: Set X to man (k + 1);
6: while X 6= Ω do
7: x← woman on the top of X’s list;
8: if x prefers X to her present partner then
9: temp← x′s present partner;

10: Match X and x;
11: X ← temp;
12: end
13: if X 6= Ω then remove x from X’s list;

14: end
15: k ← k + 1;
16: end

4.2 Proof of the algorithm

The following are some observations for the proof-

• Point 1 : If any woman x removed from the X’s list, no stable matching can contain Xx.
PROOF: Suppose after r proposals the operation remove x from X’s list was called with x = a and
X = A,then one of two cases is possible

1. Man A made advances to a, but she prefers her current partner B.

2. Woman a was engaged to A but she left him after receiving better proposal from B.

So in both of the cases a prefers B to A.
For the sake of contradiction let us assume that a stable matching exists in which A is married to a.
Now we apply induction on the number of proposals.
Since BaA, B must be married to someone occurring before a in his list of preferences. Clearly during the
algorithm the case would be that either a was B’s first choice, or B was rejected by some other woman
say b. This would have surely occurred within r − 1 proposals.

If a was first in B’s list of preferences, then B cannot marry anyone better than a, so we arrive at contra-
diction.

If a was not B’s first choice, then he must have been rejected by the women to whom he is married in
the stable matching. Lets say that the woman is b. b would have rejected him in at most r− 1 proposals.
Now all of the above procedure repeats with A replaced by B, a replaced by b and r replaced by r − 1.
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The above algorithm can only terminate at a contradiction. It will surely terminate because at maximum
it can go upto r iterations. This is because number of proposals decreases by 1 at each step but need to
be greater than zero. Hence Contradiction.

So a Stable Matching containing Aa cannot exist.

• Point 2 : If X prefers x to his fiancée and stable matching does not contain Xx, it means x has rejected
him for another.

• Point 3 : Two women cannot be the fiancée of a man.

• Point 4 : A woman’s situation never worsens throughout the course of the algorithm.
PROOF : Initially all the women are married to Ω and they marry to any other men on proposal only
when he is above the one they are engaged in their preference list.

• Point 5 : The preference list of each man never becomes empty.
PROOF : Let’s assume that he(say X) ended up having no partner and every women has a partner. But
by point 3, there should be n partners and by point 4, we can say that the women do not have Ω as their
partner. Besides X, there are only n− 1 men which is a contradiction. Therefore, X will have a partner.

• Point 6 : Once women is matched shee never becomes unmatched , she only ”trades up”.

• Point 7 : Man-optimal assignment.Each man receives best valid partner(according to his preferences).

• Point 8 : The matching obtained is stable.
PROOF : Suppose Xx is a pair from the algorithm, and X prefers some y to x. By point 2 and point
4, we can say that y prefers some other man over X. Hence, this algorithm gives a stable matching solution.

• Point 9 : The algorithm terminates.
PROOF : Once a woman becomes attached, she remains engaged, but can change a partner for a better
mate that proposes to her. That makes this algorithm a greedy algorithm for the women(Point 4). A man
will eliminate a choice from his list during each iteration, thus if the rounds continue long enough, he will
get rid of his entire preference list entries and there will be no one left to propose too. Contradiction(Point
5). Therefore all women and men are married and the algorithm terminates.

5 Existence of multiple stable matching and Conflict of Interests

One may argue that a system can have more than one stable matching. Which is indeed true, rather, it is a
common phenomenon. Some systems may even have as many as 3k/3 stable matchings (where k is the largest
integer divisible by 3 less than or equal to the number of men/women). One such example is demonstrated
below.

Men’s Choice Women’s Choice
A : a b c a : C B A
B : b c a b : A C B
C : c a b c : B A C

It can be easily verified that three stable matchings are possible, which are as follows:

Aa Bb Cc
Ab Bc Ca
Ac Ba Cb
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One particular thing which must be noted is that conflicts may arise. A stable matching which matches all men
to their first choice, matches all women to their last choice or vice-verse. A matching which is best for men
needs not be the best for women too. However, that particular matching would be the worst for women. i.e.,
in any other stable matching, no woman will be matched to a man whom she prefers less than her partner in
the best matching for men. The optimality of the matching is dependent on the algorithm used to derive the
matching. The fact that ”the best for the men is the worst for the women” is a special case of a more general
result.

Theorem 2: If one stable matching contains the couple Aa, and another contains couples Ab and Ba,
then either

bAa and AaB,

or
aAb and BaA.

PROOF: In other words, the theorem says that the situation can’t get better/worse for both A and a simulta-
neously. If it gets better for one, then it would worse for other. This can be proved by method of contradiction.
It is quite clear that in second matching, the situation of A and a can’t be worse than that in first. If so, this
would make the second matching unstable. Therefore, it remains to show that the situation can’t improve for
both at the same time.

Let A = X0, B = Xr (r > 0), a = x0, b = x1. Also, it is assumed that situations get better for both x0 and
X0, i.e.:

x1X0x0 and Xrx0X0.

In the first matching, X0 is not matched to x1, it implies that x1 must have been matched to some X1, whom
she prefers above X0. i.e. X1x1X0. Similarly, in second matching, x1 is not matched to X1, so X1 must have
been matched to some x2 whom he prefers over x1. i.e. x2X1x1. This can be carried forward for x2, X2, x3,.....
The two Stable matchings can be represented as follows:

X0x0, X1x1, X2x2.... F irst stable matching

X0x1, X1x2, X2x3.... Second stable matching

Also xk+1Xkxk and Xk+1xk+1Xk for all k ≥ 0. But k is finite and must be less than n, i.e for Xr, r ≤ n− 1. If
(r = n− 1), it is already proved Xn−1xn−1Xn−2. i.e. for second matching to be stable, x0Xn−1xn−1. But this
makes the first matching unstable. (Xn−1x0 must be present in First match also). for r < n − 1, XrxrXr−1.
But since, second matching is stable and Xr is matched to x0, then it must be x0Xrxr. This thing again makes
the first matching unstable. i.e. in both the cases, The assumptions get contradicted. i.e. Situation can’t get
better for both men and women simultaneously.
Thus, Theorem 2 is proved.

Theorem 3 : If there exists a stable matching with V married to v in complete system, then, for all sta-
ble matchings of this system V is married to v.
PROOF : Let us assume that there exists a stable matching such that V and v are not married with each
other, they are engaged with any other woman a and man A, so since V is the last preference of women v and
vice versa. So, when V is married to a and v is married to A the matching improves for both v V simultaneously
which is not possible as we proved in Theorem 2. Hence Contradiction.
Therefore, V is not married to v in any of the stable matchings.

6 Calculations of Mean number of proposals

6.1 Principle of Deferred Decisions

Game of Clock Solitaire In this game we divide the deck in 13 stacks of 4 cards each and place them in a circle
to mimic the hands of a clock with last pile at the centre of the clock. We turn the top card from centre pile and
place it face up under the pile of that card’s number i.e. place 7 under 7th pile, J under 11th pile, Ace under 1st
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pile, Q under 12th, K in the middle pile, etc. Now we turn the top card from the pile under which we just placed a
card and again place it face up under its correct pile. The game is won if we can turn all the cards in this fashion.

We lose the game if the fourth king is turned before all the other cards are turned. This is because before
turning 4th king three kings have already been picked so from the central deck 3 cards are turned after turning
first card, so it is empty and we cannot turn any card from it.

We analyse this using the principle of deferred decisions. In this method the choice of value is not made
before the moment it is turned over.
We turn over the cards by the rules of the game until 4th king is drawn and then pick the remaining cards
by any arbitrary rule till all the cards are drawn. The number of permutations thus obtained is equal to the
number of permutations of a deck of 52 cards. Each of the permutation obtained above is equally likely in both
the cases. So the probability of winning is equal to probability that last card is king in a well shuffled deck i.e.
1/13.

Principle of deferred decisions: This principle uses an idea that random choices are not made all in
advance but the algorithm makes random choices as it needs them. It is like the general principle of laziness
that don’t do something today that you can do tomorrow.

6.2 Counting: Mean number of proposals and Amnesia

In this case we assume that all men are amnesiac. None of the men has a preference list neither do they
remember which women they had already proposed, so they randomly proposes any woman. The Actual mean
would be the number of mean proposals in this situation minus the redundant proposals (all the cases when
a man proposes a woman whom he had already proposed). In calculating actual mean, these cases would not
be considered. We do not calculate the actual mean. We calculate mean in this case, which serves as a upper
bound for our required quantity.

A random sequence of women is generated, which may consists any women any number of times, but the
sequence ends the moment all the women have appeared in the list at least once. Men proceed by proposing
to women according to the generated sequence one by one. i.e. the first man proposes the first woman in the
sequence(and is obviously accepted), the second man then proposes to second woman in the sequence. The rule is
that the next man won’t make any proposals unless the previous men have been engaged(Any rejected/deserted
man must also be engaged by proposing to next women in sequence). The sequence and the ritual of making
proposal ends together. And thus, a stable matching is obtained. Note that, this matching might not be the
best matching for women, also, there is no meaning of stable matching/marriage for any man.

The number of proposals made in this procedure is equal to the number of elements in the sequence. Now,
the problem is calculate the expected number of elements in it. This problem is exactly similar to the coupon
collection problem.

6.2.1 Coupon Collection Problem

Suppose, a detergent company provides free stickers with the detergent packets. There are let say n type of
stickers. The aim is to collect all n stickers. Each packet has only one sticker and we can’t know which sticker
comes with the packet before buying it. The problem is to calculate the expected number of detergent packets
we’ll have to buy to collect them all.

If we arrange the stickers in the order we found them(the sticker we found first, leads the sequence and
the last sticker is on the last place), the generated sequence is exactly the sequence we generated in our prob-
lem. The stickers can be considered as women and buying detergent packets can be compared to proposing a
woman(getting rejected/deserted would be similar to already having the coupon). So, to calculate the upper
bound for mean number of proposals(in case of n men/women), we calculate the expected number of packets
we have to buy to collect n different stickers

Let there be n distinct coupons, and each time one buys a box he gets a random coupon. The problem is
to find the number of boxes to be bought on average to obtain all coupons.

Let pk be the probability that exactly k boxes are necessary. Let qk be the probability that at least k boxes are
necessary,then
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q1 = p1 + p2 + p3 + ....

q2 = p2 + p3 + ....

qk = pk + pk+1 + ...

The mean number of boxes used is

p1 + 2p2 + 3p3 + ... = q1 + q2 + .....

Here qi = (m
n )i−1 is the probability of finding a new coupon in or after ith box.

So,

q1 + q2 + ..... = 1 +
m

n
+
(m
n

)2
+ ...

q1 + q2 + q3 + ... = 1 +
m

n
+
(m
n

)2
+ .... =

n

n−m

The total number of boxes one must buy to get all coupons is thus, let say E(n)

E(n) =
n

n− 0
+

n

n− 1
+

n

n− 2
+ .... +

n

n− (n− 1)
= n

(
1 +

1

2
+

1

3
+

1

4
+ .... +

1

n

)
= nHn

where Hn is the harmonic sum of the first n natural numbers

6.3 Partial Amnesia

We now assume that men are partially amnesiac, i.e. All they remember is the last woman they proposed. So,
this problem is just like the coupon collection problem with the constraint that two consecutive coupons aren’t
same. Now, given this, the values of qis change as follows.

qi = 1; q2 =
m

n
; q3 =

m

n

m− 1

n− 1
; q4 =

m

n

(
m− 1

n− 1

)2

;

q1 + q2 + q3 + ... = 1 +
m

n

(
1 +

m− 1

n− 1
+

(
m− 1

n− 1

)2

+ ...

)

=
n

n−m
− m

n(n−m)

It is clearly evident that q1 = 1. Now, to take atleast two proposals, the probability that the first proposal
to one of which we already had is m/n. Now, thereafter, for i = 3 and second coupon, the probability that
coupon is among the m coupons we already have, given it is not similar the last coupon is (m− 1)/(n− 1). The
mean E(n) can be calculated as:

E(n) =

n−1∑
m=0

n2 −m

n(n−m)
=

n∑
i=1

n2 − (n−m)

nm

= (n− 1)

(
n∑

m=1

1

m

)
+

1

n

(
n∑

m=1

1

)
= (n− 1)Hn + 1.

Theorem 4 : For every preference matrix of the women ,the mean number of proposal made in the course of
the algorithm ending in an optimal solution for the men is at most (n− 1)Hn + 1.
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7 Applications

Stable Marriage Problem used in Economics, Computer Science and Mathematics for finding the stable matching
between two equally sized sets of elements given an ordering of preferences for each element. Gale-Shapley
Algorithm finds various application in real life situations like allocations of students to different universities
based on the merit list. This algorithm has been used for allocation of seats in 2015 by JoSAA.
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